C |WS CIWS - Customizable Instrument Workstation Software system
for telescope-independent LO/L1 data handling

3 Code: CIWS-IASFBO-TN-012 Issue: | 0.1 | DATE 31-MAR-14 | Page: | i
ProcessorLib 1.4.1 Programmer’s guide
R.l. CIWS-IASFBO-TN-012
Custodian: Name: Andrea Bulgarelli Signature: Date:
Prepared by: Name: Andrea Bulgarelli Signature: Date:
Reviewed by: Name: Signature: Date:
Approved by: Name: Signature: Date:

All information contained in this document is property of INAF. All rights reserved.

CIWS

Customizable Instrument Workstation Software (CIWS) for

telescope-independent LO/L1 data handling

-3

Code: CIWS-IASFBO-TN-012

Issue:

0.1

DATE 31-MAR-14

Page:

AUTHOR LIST

Andrea Bulgarelli

Italy

INAF/IASF Bologna,

DISTRIBUTION LIST

CIWS e-mail list

ciws@iasfbo.inaf.it

All information contained in this document is property of INAF. All rights reserved.

CIWS

Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

S Code: CIWS-IASFBO-TN-012 Issue: | 0.1 | DATE 31-MAR-14| Page: iii
DOCUMENT HISTORY
Version Date Modification
do.1 31 March 2014 First draft

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

,::' Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: 1
TABLE OF CONTENTS

L. INTRODUCTION ...ttt ittt ettt e e bt e e e sa bt e e e sh b et e e e ek b et e e e ahbe e e e e aabe e e e e aabeeeeeanbeeeeesnbreeesanbneeeens 2
ACRONYIMS ettt et e ookt e e ook bt e ook b et e ook b et e ook b et e oo e R b et e oo aR b et e e e R b et e e e R b e e e e e anb e e e e e anre e e e e nres 3
REFERENCE DOCUMENTSottt ittt ettt e sttt e et e e s ekt e e s aa et e e s asn et e e s sa b e e e e s anne e e e e snreeeessnnneeenns 4
1. DESIGN MODEL ...ccoiiutitiiiiitiie ettt ettt e e a et e e e skt e e e ek b et e e e aa b et e e e aa b et e e e sabe e e e e ambe e e e e anbreeessnbneeeens 5
1.1 OVERVIEW. ...ttt et e e et e e et e s et e e e e s e e e e e e e e 5
1.2 MONITOR HIERACHY ...ttt ettt e e e s e e s e e s e e e s ann e e e ennes 6
1.3 PROVIDER HIERACHY ...ttt ettt sttt et s e e e s e e s an e e s enn e e e e ennnes 7
1.4 OUTPUTFILEPROCESSOR HIERARGCHY ...ttt 8
2. MEASUREMENT AND MEASUREMENT SESSIONcciiiiiiiiiiiiie e 10
2.1 MEASUREMENT SESSION ...ttt e ettt e e e s e e e e s st e e e e st e e e e s sabeeeesanbneeeeans 10
2.2 MEASUREMENT ..oei ittt ettt sa et e e e s b bt e e e sa b et e e e sabe e e e s aabe e e e e sabbeeesaabaeeeesabaeeeeaas 11
3. HOW TO WORK PROCESSORLIB.......eetiiiitiiiiiiiiit ittt e s e s e e s s 15
3.1 INPUT INTERFACE oottt ettt ettt e sttt e e st e e e e sttt e e sttt e e e s bbbeeesnnneees 15
3.2 PROVIDER ...ttt ettt e e 16
Bi2. 0L P A CKET e 16
B.2.2 RUN I ittt ekt e ekt e e ek et e e e E et e e e e R e e e e Rt e e e e e e R e e e e e e 16
3.2.3 Start time and STOP TIMEoooiiiieiiee et e e e e s e e e e e e e e s e bbb e e e e e e e e e s nrereees 17
T O 11 1 o 11 | APPSO URPPR PP 17
3.3 PROCESSOR ...ttt ettt e e bttt oo bt e e b e et e oo b b et e e o b et e e e hb et e e e h b b et e anbee e e nnne s 17
4. BUILDING A PROCESSOR......cciiititiiiiiie ettt ettt e et e et e e et e e e e e e e e asre e e e e s re e e s e nnre e e e ennes 19
A1 PROCESSOR.ttt ettt e oo bt e e bttt e e aa b b et e e s bt et e e e bt et e e e nnb e e e e nnaeeennneeeas 19
T 9 1 @0 1 T 1Y/ To [PR 19
O I =1 0 T Yo [PR 21
5. AN EXAMPLE OF PROCESSORcciittitiiiitiite ittt sttt asb e e st e e s e bt e e e e anbe e e e ennnes 24
5.1 GRIDCALDFETE PROCESSOR.....ccciitiiiiiiiiiiea ittt et e st e e e snnne e nnnnees 24
5.2 IMAIN Lttt h e b et aE et e a b et e e ah e et e nh et e n e e e es 24

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: 2

1. Introduction

The diagrams and the terms presented in this document are conformed with the UML-OMG 1.4
standard [2]. The Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system.

The UML offers a standard way to write a system's blueprints, including conceptual things such as
business processes and system functions as well as concrete things such as programming
language statements, database schemas, and reusable software components. The UML represents
the culmination of best practices in practical object-oriented modeling.

For the description of the architecture are used the implementation diagrams. This diagrams show

aspects of physical implementation, including the structure of components and the run-time

deployment system. They come in two forms:

e component diagrams show the structure of components, including the classifiers that specify
them and the artifacts that implement them;

e deployment diagrams show the structure of the nodes on which the components are deployed.

For a logical overview of the software architecture are used the package diagram (a package is a
grouping of element as component, code, etc.) and the class diagrams. For a description of the
sequence of operations the activity diagrams are used.

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

.3. Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 | Page:
ACRONYMS
AD Applicable Document
AlV Assembly, Integration and Verification
CCOE Central Check-Out Equipment
CERN European Organization for Nuclear Research
Csl Ceasium lodide
DAQ Data Acquisition
EGSE Electrical Ground Support Equipment
FEE Front-End Electronics
FITS Flexible Image Transport System
GPS Global Positioning System
GRID Gamma Ray Imaging Detector
GSE Ground Support Equipment
HK HouseKeeping
LAN Local Area Network
MCAL Mini-Calorimeter
MGSE Mechanical Ground Support Equipment
ML Milions
NFS Network File System
PD Photo Diode
PDHU Payload Data Handling Unit
P/L Payload
RD Reference Document
SC Science Console
SCOE Specific Check-Out Equipment
ST Silicon Tracker
TC Telecommand
TE Test Equipment
™ Telemetry

All information contained in this document is property of INAF. All rights reserved.

CIWS

Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

)

Code: CIWS-IASFBO-TN-012

Issue:

0.1

DATE

31-MAR-14

Page:

Reference documents
BSSC, “ESA software engineering standard”, ESA PSS-05-0 Issue 2, February 1991.

[1]
[2]
[3]

“OMG Unified Modeling Language Specification”, Version 1.4, September 2001.

ESA Packet telemetry standard

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: 5

9

1. Design model

1.1 OVERVIEW
In this section are represented the UML class diagram for the ProcessorLib. For more details see

[5]-

The next picture shows the main class diagram of the library. In this diagram the main classes are

represented:

o Processor: this class represent a single processor with all its functionality, as described in the
next chapters

e Provider: a processor can receive the telemetry flow of data coming from a single provider. The
selection of the provider can be performed by means of a configuration files (.processor)

e Monitor: this class represent an interface useful for the communication with a monitor. A monitor
could be a software that shows some information about the processor

e OutputFileProcess is the class that represent the output format of the processor. The output
could be a FITS file.

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

2 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 | Page:
[Proces s0r
Mornkar] Wb _ind - shrict b
TenmwsFITS - I

o Ror) Tt _mows - dword
*. apstrack- sendresal) Wrlol_nows_bad - dword
oz patract-+ s2ndS1aE]) SelieName CongRacdeiLb - char
*cogEtratto s2n00mon] TlieName CorigProoes 5o - char
3 nsiract== sendOnhiods]) Tetost bl o
*.caesiract-- sendirimm it | Tepack otiD - Int

Trenira_mEmmeters - char
Seconfiguration_di - char
Teauipul_flie_flag: ooal
Tecampaign_id - char

Tk ol Stan_lekcommand : Int
Trpack 21D stop_telecommand - Int
Sepack SID Ins iamend_conty - Int
Ter@ck 2D messuEment_lkog: in
Veamay Catz0utput - wobl*
im0t AP lleP rocess of - Dyle
S OutpUtFIE Mam eBas e - chart

FEainuzk- stz ihsssuRmEn) - Rt
Fooinuzlo 12 AMeEs URT e Se8s DA) - ok
Pe-oitual-> getSystemCeta) © struct m*

*Processon)

T ccansiract-= sefvalia]) - bool

* ootz ~Poozssa)

*oaimuzl-= cRAEMeEm oy SiUsL R Wk

Provider Feainual-> crEieR adet]) - vl

Teacq hpe: I F*ecasiractz= INRCarvaleFari TS _Inkj) - char—
Teprog_type - It 7*-ocastract=o- Infint Value FoFTS_IARQ) - -
T miE - char Fecansiracto INRCTErVEeForFTS _closel) - char
TelogPam - crar Tz szt RNt Value Ry FTS_ckee) - hr
Tewin_okd_acg fiype: char % ccanstracto process oiDeserbion) - chEr
TemEckEnD - Nt b 2d0o nfpust koo flerEme - ShEr) - ool
TepackeD_SEN_ielecommand © I *-scoomsl Vi alk- geTon_nrcws() - It
fea ckefiD_stop_Selecommand - i *ocooms vituake- get_oufui_fle_tag) - bool
T ckefiD_Instrument_contly - it :ﬁﬁ ﬂﬁ:zga{a‘ﬁg%xc’:;ar
ﬁﬁﬁﬂmm—m o *oiruzle-> 2dd0utu FlleR mo2 ssorio - Cull FlProces sor) - vkl
Tetol Dacket bed - owond #p T caituzl> R Ee0u pu Fllehames) - ohEr
Telol_packet_instrumert_conflg: dword T oairiualk-= pro cesel acket Measurmen iLog)) - ol
Telol_packet_instrumant_contig Bad - dwand Toainiuak-o- P cessP ket Con fgurathn) - wokd
Tetol packel_mezsumment_log : dword
Tetof_packe!_measumment log med: dword
TefliehEmeSiRciug © char
Femaln_ope=tonal_modeiD: in
W e_oufput_stop_stan - it T

Tesiate_star_stop - bool

Teend_measurement - boal L IEd ST

O Rt FleP e ssan)
=
PRz . * aifuEke- il Pl oo ssor)
T e | % 05 @ cte= 1R[]
. eansl Ect == conne ofTo Device() s imotes ChEE])
e g;: ?ggj“": o) o I e WIREDEE])
%ot Lo - b= Tey b=
b GetFLINALY) Sl 12 ol 0adE)
FccgEt Bl end eI B i

ol 12 ol 22l Flahame |

Vool B> endheasl BmentS ession]) S iftuake getFlishame)]

*cooons tMRuEE-> get_s_nun()
®ccoonstMfuElk-- gt_acg type()
®ccoonsivifuEk-- get_poc fype()
ocaiEtElee gElSEnTIme|)

ocaiEt @ GRS TIme|)

cayiiE b S EINpUIPACkEtS R am|)
e et Time From Log()

*sanctpotss oot desthation_drecton)
*ocaEtEds- gel_sm_fype()
%zayiriuE b= 5 etmonion)

TocaiEtElee gElP B el
®coyiiuE ke 5 Ei0peration ahiode))
®coyiiE ke getmaln_ope =ton al_mode))
T —————

Figure 1: overview of ProcessorLib

1.2 MONITOR HIERACHY

| All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: 7

Two types of Monitor are provided; the MonitorDISCOS that interface the processor with the
DISCOS monitor, and a dummy monitor with no output. This hierarchy could be extended with other
monitors.

Manitor

Tgrch :int

*Monitor])

%< <abs tracts> s endReset])

%o 2abs tract=> 5 endStatus {)

%< =abstract>> s endOption{)

%< 2abs tract=> 5 endCphode])
%2 2abs tract=> 5 endinform ation{)

MonitcrD ISCO S

®\onitorDISCOS]) MenitorD ummy

%5 endReset])

%5 endStatus) ®hionitorD ummy)

%2 endOption) %ocvitualk-> sendRes et)

%5 endOpMode]) %o2vitual-> sendStatus{)

*: endinform ation{) %osvitualk-> send Dipticn{)
%22vitual-> sendOphode])
%o2vitual-> sendinformation|)

Figure 2: Monitor Hierarchy

1.3 PROVIDER HIERACHY

Two type of provider are present; the ProviderDISCOS that use as input the DISCOS shared
memory, and the ProviderSinglelnput. The last could be a single input file containing the telemetry
or a socket.

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: 8

DISCOS
Frovider
*
. ProviderDISCOS Provider Singlelnput
%cgt;lﬂt Co char INAME LEN T¢FITS _directory - char*
aZb_start_file - char [_] T¢get_time_mode : byte

&va2b_stop_file - char [NAME_LEN]

*ProviderSinglelnput()

*ProviderDISCOS() W B
) . <<virtual=> ~ProviderSinglelnput()
$<<vitual>> ~ProviderDISCOS() ®czyitual=> connectToDevice()

®<<vittual=> connectToD evice() Voovirtuals readRUNID()
$<virtual>> readRUNID() ®oavintual=> closeDevice()

:‘:‘:”"!”'-'EI:’:’ closeDevice() ®=zyirtual=> endMeasure mentSession()
<=virtual>> getStartTime() ®zzvintualz> endMeasure ment()
$<<vittual>> getStopTime() ®ocvittual>> getStartTime()
®=zyittual>> endMeasurement() ®ozvintuals> getStopTime()
*iiﬂrtual}} endMeasurementSession() ®oovintual>> get_destination_directory()
®=zyittual>> get_destination_directory() ¥oovinuals> setﬁputpacketétream[}

Bocyirtual=> get_src_type() .
: U <<wvirtual=> get_src_type()
$<«virtual>> getPacket() *czyirtual>> getPacket()

Figure 3: Provider Hierarchy

1.4 OUTPUTFILEPROCESSOR HIERARCHY

At the moment only the FITS output type are present, but this hierarchy could be extended with new
type of outputs.

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page:

Do FlleProcassor
T liename - chart

00 Pl ProCEsmon

ooyt om0 WUt IR oo
oo momTaCT > R

W mnmTAIT > o)

o mnm a2 wrialeta

Woc miosTacT > primemor
oo mim TR > Dadep)

oo miomTRCE > SatF el

ooyl - gaTTliatleena)
FITE
Tarlfir - i~

FoommmTasie B
wecasTaC - Close]

R e
WETED

Sccul sk ~FITSD
S-ccul sl priar ron
oy ek howdliey 0
ooyt ruabe s lehlymal)

F IT= Ereary Tainls
U HG R

" TS Elnary Tainies)
%< oyiriual > ~F TS Enary Taled

Figure 4: OutpuFileProcessor Hierarchy

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |10

2. Measurement and measurement session

2.1 MEASUREMENT SESSION

The main purpose of the processor software is to obtain and process the data produced by the
instruments under test.

Each measure starts with a start event (typically a start command) and end with a stop event
(typically a stop command) as determined by the configuration file (.processor). A single measure is
univocally identified with

e Runid

e Campaign

e Chain of acquisition (more generically, input type)

A set of measurements represent a measurement session. A measurement session does not need
a unigue identifier, but corresponds with a unique campaign and test level.

In the next picture is showed the entire steps performed for a measurement session. The yellow
activities are performed by library; the red activities are performed by the particular processor
written by user of the library.

All information contained in this document is property of INAF. All rights reserved.

CIWS

Code: CIWS-IASFBO-TN-012

Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

Issue: 0.1 DATE

9

31-MAR-14 | Page: |11

Create stream
=~ structure for PacketLib

e Allocate memory for
‘ the struct
Reads it from file

| | configuration (see
~ounter = 0 }

‘ PacketLib file
| | configuration)
Send information to
Monitor

| }

| 2 source of ;
|

|

|

|

|

‘ [[no] ‘

id
| | _)
|
| vsteD
|
| |

Format filename of ﬁts)

startMeasureme

\ terminated? nt

| close source of
data

Figure 5: Measurement session

2.2 MEASUREMENT

In the next picture is showed the entire steps performed during a measurement. The yellow
activities are performed by library; the red activities are performed by the particular processor
written by user of the library.

All information contained in this document is property of INAF. All rights reserved.

CIWS Customizable Instrument Workstation Software (CIWS) for

telescope-independent LO/L1 data handling

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14

Page:

12

Read a buffer from
R input data source

L

nods

Get packet

N

Send information
to Monitor

Figure 6: Measurement

All information contained in this document is property of INAF. All rights reserved.

CIWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page:

13

Send informtaion to
Monitor

Figure 7: Init FITS file

All information contained in this document is property of INAF. All rights reserved.

CIWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page:

14

Figure 8: Close FITS file

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |15

3. How to work ProcessorLib

In the Figure 9 are described the main functionality of the library.

The class showed in the last chapter implement, on the whole, both the general purpose functions
included in all the processors (part A, in the next diagram of) and all the elements needed to
customize them (part B), given the particular instrument and data flow to be processed.

A single processor can work in this operational mode:
1. DISCoS mode: the processor is attached with DISCoS software and gets the data from it..
DISCoS mode has two sub-mode:
1.1. DISCoS online mode: the data source for DISCoS are obtained from an instrument or
a software generator.
1.2. DISCoS playback mode: DISCoS is used for providing data to processor, but this data
are obtained from the raw file archived by Archiver.
2. test mode: a processor can run without DISCoS. This mode is useful during the
development of a processor or when DISCoS is not finished (for parallel development within
a software team).

Log book

QL interface

FITS 1

FITS 2

4 SHMDISCoS ,—@—» ProviderDISCoS

Processor part A Processor part B <3

o InputProcessor '—®—> ProviderSinglelnput

XML

Resender f- - - - >

Figure 9: ProcessorLib general schema

3.1 INPUT INTERFACE

The input of the system is an input of bytes. This flow is managed by a set of input interfaces able
to:
1) Connect to SHM DISCoS (in DISCoS mode)

| All information contained in this document is property of INAF. All rights reserved. |

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |16

2) Read the byte strema in input from File or Socket (in test mode)

The main purpose of these interfaces is to get from the byte input stream the necessary humber of
bytes to recognize the TM packet. The reading operation are performed in the following way:
- About the DISCoS mode, a buffer of fixed dimension are read from the DISCoS
shared memory
- About the test mode, the TM packet header (of fixed dimension) is read. From this
header the dimension of the source packet is read and, after this, a number of byte of
the same dimension of the source packet is read.

The output of these input interfaces (see number 1 in the diagram) is a TM packet (see [6]).

3.2 PROVIDER

Provider reads the ESA source packet from driver and
a. filters the packet and send to processor only the ESA source packet recognized to
processor (event data packets, instrument configuration packets, measurement log
packets)
b. manages the run id of the measurement
c. manages the start and stop time of the measurement.

3.2.1.1 PACKET

The telemetry packet managed are the following:

e event data packet

instrument configuration packet: with the configuration of a single measurement
measurement log packet: the log of a measurement

start telecommand

stop telecommand

A measurement starts with the start TC and terminates with the stop TC. A measurement session is
a collection of measurements. This means that in the input byte streamt there are measurement
with start and stop TC.

In test mode it is possible to configure the processor to ignore the start and stop TC. In this way the
input data flow becomes a single measurement.

322 Runid

Each measurement is characterized with its run ID. When a new measurement starts the run ID is
incremented in the following way:
1) DISCoS mode: when a new start TC is read
2) Test mode: when a new start TC is read, but with three operational mode:
a. The run ID of the first measurement is zero;
b. The run ID of the first measurement is read from a configuration file, as specified in
the .processor;

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |17

c. The run ID of the first measurement is determined from the name of the input file.
This operational mode is useful with the raw file generated by DISCOS system in
DISCoS playback mode.

In test mode it is possible to ignore the start/stop TC sequence. In this case the first run ID will be
the unique run ID of the current session (but in the case b) the run ID of the following session is
incremented).

3.2.3 Start time and stop time

For each measurement it is necessary to know the start and stop time of the measurement. This
times are determined in the following way:
1) DISCoS mode:
a. In playback mode the date and time are read from DISCoS logs
b. In other cases the time are determined by DISCoS system
2) Test mode:
a. Date and time are read by the system
b. The date and time are read from DISCoS logs, when the input files are raw files
generated by DISCoS system.

3.2.4 Output

The Provider output (see number 2 in the preceding diagram) is represent by the following TM
packet:

e Eventdata

e Instrument configuration

e Measurement log

3.3 PROCESSOR

A Processor accept, as input, the TM packet coming from Provider, elaborates it and generates one
or more output files for each measurement.

The output files could be in every file format (FITS, XML, text). In the following examples there are

the following cases:

e A Processor that generates a FITS file with the events

e A Processor that generates two output files: event file and histogram file with the event
accumulation.

In Figure 9 the processor is divided in two parts:
e Part A: this is the general purpose part, and this part manages
1) The logic of measurement session (see Figure 5)
2) The logic of a measurement (vedi Figure 6, Figure 7 e Figure 8)
3) The reading of the TM packets coming from Provider
4) Sending the input TM packet to many output destinations (not yet implemented)
5) The interfacing with the QL
6) The interfacing with the log book (not yet implemented)
e Part B: this is the more specialized part, and this part manages :
1) The elaboration of data container into the TM packets
2) The opening, closing and writing of the output files.

| All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

)

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |18

The part B should be written by users of the ProcessorL.ib.

For a processor working in test mode it is also possibile, if the check of start/stop TCs is enabled,
the generation of a FITS file containing all the events sent between a stop and a start TC.

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |19

4. Building a processor

The realization of a processor means that it is necessary to create a C++ project and two libraries
have to be linked:

1) PacketLib;

2) ProcessorLib

Two class must be realized:
1) A derived class of the Processor class that implements all the pure virtual methods
2) A derived class of the OutputFileProcessor class, one for each output file that implements all
the pure virtual methods
3) The main(), with the calls for the instantiation of the processor (see below).
4) The writing of the configuration files:
a. .processor, with all the parameter for the run-time working of the processor
b. .stream that describes the byte input stream
c. one .packet, for each TM packet that contains the description of the telemetry packet

See [6] for 4.a and 4.b.

4.1 .PROCESSOR

4.1.1 DISCoS Mode
[Processor]

-- Configuration file for PacketLib
CAL-CSIBarsTE DISCOS.stream
-- output file flag

true

-- campaign ID

cer

-- test level

0

-- packet ID with event data

1

-— packet ID of start telecommand
none

—-— packet ID of stop telecommand

none

-- packet ID instrument configuration
none

-—- packet ID measurement log

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |20

none
-- extra parameters ———————————-——-—-————————————
[Provider]

-- 0 DISCOS, 1 SinglelInput

0

-- acquisition type (chain) 0 = ACQ OLD (playback mode)
0

-— direcotory with log file (N.A. for DISCOS)
/home/archive/log/

-—- only for playback mode (acg_ type=ACQ OLD) acqg type of current playback
mode

hbrs

-—- extra parameters ----—————-——————-——————————————
[InputProvider]

—-— channel of shared memory for event data

18

—-- channel of shared memory for instrument configuration
none

—-—- channel of shared memory for instrument measurement log
none

[OperationalMode]

-- 0: ignore start/stop telecommand

-- 1: start measurement with start TC, stop measur. with stop TC or EOI

0

-- 1: write output data between a stop and a start
-- 0: don't write output

0

[Monitor]

-- 0 Dummy, 1 DISCOS

1

-—- extra parameters ---—————————————————————————
-—- channel

28

[FITS key]

-—key 1

All information contained in this document is property of INAF. All rights reserved.

telescope-independent LO/L1 data handling

C IWS Customizable Instrument Workstation Software (CIWS) for

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14

9

Page:

21

TELESCOP

Agile

--key 2

INSTRUME

Grid

--key 3

MODEL

October 2001

-—key 4

DETNAM

MCAL

-—-key 5

HOSTCOMP

TESRE T.E.

--key ©

DATATYPE

Diagnostic

41.2 Test mode

[Processor]

-—- Configuration file for PacketLib
CAL-CSIBarsTE File.stream

-- output file flag

true

-— campaign ID

cer

-—- test level

FEE

-- packet ID

1

-—- packet ID of start telecommand
none

-—- packet ID of stop telecommand
none

-- packet ID instrument configuration

none

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |22

—-— packet ID measurement log

none

-- extra parameters ———————————-———-————————————
[Provider]

-- 0 DISCOS, 1 SinglelInput

1

-— acquisition type (chain) 0 = ACQ OLD (playback mode)
0

-— direcotory with log file (N.A. for DISCOS)
/home/archive/log/

-—- only for playback mode (acq type=ACQ OLD), acqg type of current
playback mode

hbrs

-—- extra parameters ---—————-————————————————————
-- directory for writing FITS file

fits/

[InputProvider]

-—- This section is only for SingleInput

-- mode for the determination of run id 0: start from 0, 1: read the run
id from a file

-- 2: for playback mode, read from filename

—-— file name that contains run id
runid.run

-- reading of start and stop time of measurement 0: system date and time
1: first packet in input

-- and last packet in input 2: start/stop packet 3: DISCoS log file (N.TI)
0

—-—- file name in input
/datal/archive/raw/science/0506/cer05060 011018.hrt

[OperationalMode]

-— 0: ignore start/stop telecommand

-- 1: start measurement with start TC, stop measur. with stop TC or EOI

-- 1: write output data between a stop and a start

-- 0: don't write output

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for

telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page:

23

0
[Monitor]
-- 0 Dummy,

0

1 DISCOS

-- extra parameters ——————————————————————————--=—

-—- channel
28

[FITS key]
-—key 1
TELESCOP
Agile
--key 2
INSTRUME
Grid

--key 3
MODEL
October 2001
-—-key 4
DETNAM
MCAL

--key 5
HOSTCOMP
TESRE T.E.
--key 6
DATATYPE

Diagnostic

All information contained in this document is property of INAF. All rights reserved.

C IWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent LO/L1 data handling

9

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE | 31-MAR-14 | Page: |24

5. An example of processor

5.1 GRIDCALDFETE PROCESSOR

Processor
o Pro o=ssorLin)|

FITS BinaryTable

(o Procassorl i)

GRIDCALDFETEF moessor

Beapid : int
Bepd_num : ushort GRIDCALDFETE_FITS
*GRIDCALDFETER mossson)

<< typedet> T irtuale> createbl emonS ructur() *GRIDCALDFETE_FITS{)

MCAL_GRID_PACKET Phacirtual> setValus]) “'=GBIDC.!~LE§-F_ETE_FITEE-

Tha<irtual=> initCharyslueForF TS _init() :*{ nirtual=> init{)
T rtusl=> initintValusForF TS init() =rtual=> cloze()
< rtual=> initCharValueFoF TS _close]) W< irtusls> writeDats()
T rtual=> initintValueForFITS_close()

s<typedets T irtual=> processorDescriptor])

MCAL_BLOCK

Figure 10: Class diagram of a processor

5.2 MAIN

The library supports the management of exceptions. This means that the block of code for

generation of the processor must be in a try-catch block.
try

First of all it is necessary to instantiates the processor:
GRIDCALDFETEProcessor* gp = (GRIDCALDFETEProcessor*) new GRIDCALDFETEProcessor();

The second step is to load the configuration file:
gp->loadConfiguration ("./CAL-DFE-TE/CAL-DFE-TE File.processor");

After this, the measurement session should be started:

gp->startMeasurementSession () ;

At the end, the catch should be managed in the following way:
catch (PacketExceptionIO* e)

cout << e->geterror();

catch (PacketException* e)

{

All information contained in this document is property of INAF. All rights reserved.

telescope-independent LO/L1 data handling

C IWS Customizable Instrument Workstation Software (CIWS) for

k] Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 | Page: |25
cout << e->geterror();
}

Di seguito é riportato il listato completo:
/***
main.cpp - description

begin : Fri Mar 8 11:43:52 CET 2002
copyright : (C) 2002 by Andrea Bulgarelli
email : bulgarelli@tesre.bo.cnr.it
***/
/***
* *
& This program is free software; you can redistribute it and/or modify *
w it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***/
#ifdef HAVE CONFIG H
#include <config.h>
#endif
#include <iostream.h>
#include <stdlib.h>
#include "ProviderDISCOS.h"
#include "ProviderSingleInput.h"
#include "GRIDCALDFETEProcessor.h"
#include "common.h"
#include "MonitorDummy.h"
#include "PacketExceptionIO.h"
int main(int argc, char *argv([])
{
try
{
struct tm* tm int;
time t timevarl;
time t timevar2;
time (&timevarl) ;
GRIDCALDFETEProcessor* gp = (GRIDCALDFETEProcessor*) new GRIDCALDFETEProcessor();
gp->loadConfiguration ("./CAL-DFE-TE/CAL-DFE-TE File.processor");
gp->startMeasurementSession () ;
time (&timevar2) ;
cout << "Time: " << timevar2-timevarl << endl;
cout << "Media: " << gp->getTot nrows() / ((timevar2-timevarl) ? (timevar2-timevarl) :1) <<
endl;
return 0;

}
catch (PacketExceptionIO* e)

{

cout << e->geterror();
}
catch (PacketException* e)
{

cout << e->geterror();

All information contained in this document is property of INAF. All rights reserved.

