
BSSC(94)1
May 1994

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

Guide to the
selection and
use of
CASE tools

Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

ii BSSC(94)1
DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: BSSC(94)1

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

1 0 17/05/1994 First issue
1 1 31/10/1994 Editorial changes

Approved, 17th May 1994
Board for Software Standardisation and Control
C.Mazza, Chairman

Copyright © 1994 by European Space Agency

BSSC(94)1 iii
TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION...1
1.1 PURPOSE.. 1
1.2 OVERVIEW... 1

CHAPTER 2 CONCEPTS, BENEFITS AND STRATEGY ..3
2.1 INTRODUCTION ... 3
2.2 CONCEPTS ... 3
2.3 BENEFITS.. 4
2.4 STRATEGY... 5

CHAPTER 3 CASE TOOLS IN THE SOFTWARE LIFE CYCLE................................8
3.1 INTRODUCTION ... 8
3.2 TOOLS FOR SOFTWARE PRODUCTION ACTIVITIES .. 9

3.2.1 User Requirements Definition Phase .. 9
3.2.1.1 Documentation Tools... 9
3.2.1.2 Requirements Management Tools .. 9
3.2.1.3 Prototyping Tools ... 10

3.2.2 Software Requirements Definition Phase.. 10
3.2.2.1 Modelling tools ... 10
3.2.2.2 Requirements Management Tools .. 12

3.2.3 Architectural Design Phase ... 12
3.2.3.1 Modelling Tools .. 12
3.2.3.2 Prototyping Tools ... 13

3.2.4 Detailed Design and Production Phase.. 13
3.2.4.1 Detailed Design Tools .. 14
3.2.4.2 Code Generators.. 14
3.2.4.3 Language-Sensitive Editors ... 14
3.2.4.4 Compilers ... 15
3.2.4.5 Linkers .. 15
3.2.4.6 Build tools ... 15
3.2.4.7 Documentation Generators ... 16

3.2.5 Transfer Phase .. 16
3.2.5.1 Installation Tools... 16

3.2.6 Operations and Maintenance Phase ... 16
3.2.6.1 Reverse Engineering Tools .. 17

3.3 TOOLS FOR SOFTWARE PROCEDURAL ACTIVITIES .. 17
3.3.1 Software Project Management... 17

3.3.1.1 Project Planning Tools ... 18
3.3.1.2 Software Cost Estimating Tools .. 18
3.3.1.3 Risk Analysis Tools... 18

iv BSSC(94)1
TABLE OF CONTENTS

3.3.1.4 Process Modelling Tools.. 19
3.3.1.5 Process Support Tools... 19
3.3.1.6 Project Reporting Tools.. 19

3.3.2 Software Configuration Management.. 20
3.3.2.1 Librarian Tools .. 20
3.3.2.2 Repository Tools... 21
3.3.2.3 Document Management Tools .. 21
3.3.2.4 Problem Handling Tools... 21

3.3.3 Software Verification and Validation... 21
3.3.3.1 Tracing Tools .. 22
3.3.3.2 Comparators .. 23
3.3.3.3 Static Analysers .. 23
3.3.3.4 Test Case Generators .. 23
3.3.3.5 Test Harnesses... 24
3.3.3.6 Debuggers.. 24
3.3.3.7 Coverage Analysers ... 24
3.3.3.8 Performance Analysers .. 24
3.3.3.9 Test Management Tools .. 24
3.3.3.10 Program Proof Tools .. 25
3.3.3.11 Semantic Analysers.. 25

3.3.4 Software Quality Assurance ... 25

CHAPTER 4 SOFTWARE ENGINEERING ENVIRONMENTS................................26
4.1 INTRODUCTION ... 26
4.2 SEE DESIGN CONCEPTS .. 26
4.3 REFERENCE MODELS ... 27
4.4 CASE TOOL INTEGRATION STANDARDS .. 29

4.4.1 CASE Data Interchange Format.. 29
4.4.2 Portable Common Tools Environment.. 29

4.5 THE ESSDE ... 30

CHAPTER 5 EVALUATION AND SELECTION OF CASE TOOLS..........................32
5.1 INTRODUCTION ... 32
5.2 EVALUATION OF CASE TOOLS... 33
5.3 SELECTION OF CASE TOOLS ... 35

APPENDIX A GLOSSARY ... A-1
APPENDIX B REFERENCES... B-1
APPENDIX C INDEX..C-1

BSSC(94)1 v
PREFACE

PREFACE

In 1992, the Director General of ESA requested the Board for Software
Standardisation and Control (BSSC) to report on the use of Computer Aided Software
Engineering (CASE) tools by the Agency. The BSSC issued a report recommending
that:
• ESA should not impose a single set of CASE tools for all its software projects;
• commercially available CASE tools should be used;
• every proposal for the use of CASE tools should include a training plan.

The Director General endorsed these recommendations.

The fact that no single CASE tool or toolset can be recommended for all ESA
software projects implies that projects must define their own requirements for CASE
support and obtain the tools that meet their needs. The BSSC have produced this
guide to help projects do this by discussing:
• CASE concepts, benefits and strategy for use;
• where CASE tools can be applied in the software life cycle;
• how CASE tools can be integrated into a Software Engineering Environment;
• how to evaluate and select CASE tools.

The following past and present BSSC members have contributed to the
production of this document: Carlo Mazza (chairman), Gianfranco Alvisi, Michael
Jones, Bryan Melton, Daniel de Pablo, Adriaan Scheffer and Richard Stevens. The
BSSC wishes to thank Jon Fairclough and Colin Rolls for their assistance in the
development of this document.

The BSSC intends to issue this guide as a PSS document after a period of trial
use and feedback. Requests for clarifications, change proposals or any other comment
concerning this guide should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Mr C Mazza Attention of Mr B Melton
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-64293 Darmstadt NL-2200 AG Noordwijk
Germany The Netherlands

vi BSSC(94)1
PREFACE

This page is intentionally left blank

BSSC(94)1 1
INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 PURPOSE

ESA PSS-05-0 describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA) [Ref 1].

Guidelines on the application of the standards are provided in the
series of guides described in ESA PSS-05-01, “Guide to the Software
Engineering Standards” [Ref 2 to 9]. This document has been produced to
provide organisations and software project managers with guidelines for the
use of Computer Aided Software Engineering (CASE) tools.

Information about tools present in the ESA PSS-05 guides has been
collected into this document to provide a self-contained, integrated view of
CASE. The concepts and terms provided in this guide provide a consistent
and logical framework for using CASE tools.

This guide does not identify specific CASE tools or make
recommendations about which tools to use. Organisations and project
managers should evaluate and select tools with the aid of this guide and
decide what is best for them.

1.2 OVERVIEW

Chapter 2 defines computer aided software engineering and
discusses the benefits and the strategy of its use. Chapter 3 identifies the
types of CASE tools that can be used to support the life cycle tasks defined
in ESA PSS-05-0. Chapter 4 discusses Software Engineering Environments.
Chapter 5 provides guidelines for the evaluation and selection of CASE
tools. Appendix A contains an extensive glossary of CASE terms. Appendix
B contains a list of references and Appendix C an index.

2 BSSC(94)1
INTRODUCTION

This page is intentionally left blank

BSSC(94)1 3
CONCEPTS, BENEFITS AND STRATEGY

CHAPTER 2
CONCEPTS, BENEFITS AND STRATEGY

2.1 INTRODUCTION

Software tools have existed for as long as software itself. The
concept of “Computer Aided Software Engineering” (CASE) was formulated
in the early 1980”s to describe the tools used for editing data flow diagrams
and entity relationship diagrams. These “graphical editors” enforce the rules
of the methods that they support. This enables software engineers to
construct models that are consistent and syntactically correct. The graphical
editors are sometimes combined with a database, usually called a
“repository”, that stores the products of the tools.

The meaning of the term “CASE tool” has now broadened to include
any tool that supports software development. A CASE tool may apply to one
or more activities of the software life cycle. CASE tools may be integrated to
make a “Software Engineering Environment” (SEE) that ideally provides full
support for all software engineering activities. SEEs are discussed in
Chapter 4.

Section 2.2 defines what a CASE tool is. Section 2.3 discusses the
benefits of using CASE tools. Section 2.4 outlines the strategy for the
successful use of CASE tools.

2.2 CONCEPTS

A Computer Aided Software Engineering (CASE) tool is “a software
tool that aids in software engineering activities, including but not limited to
requirements analysis and tracing, software design, code production,
testing, document generation, quality assurance, configuration management
and project management” [Ref 10].

All CASE tools should:
• support the application of a software method, programming language

or procedure;
• check that the rules of the method, programming language or

procedure are obeyed and inform the tool user when they are not;
• store the software products generated by the application of the method,

programming language or procedure.

4 BSSC(94)1
CONCEPTS, BENEFITS AND STRATEGY

2.3 BENEFITS

The justification for using CASE tools is to improve quality and
productivity. Quality improvements are measured by reductions in the
number of faults and increased conformance to user requirements.
Productivity improvements are measured by reductions in the effort required
to develop and maintain the software.

Examples of quality improvements are:
• fewer errors in software models when the rules of the method are

enforced by modelling tools;
• fewer errors in source code when static analysis tools are used to

enforce coding standards;
• fewer configuration management errors because the tools ensure that

the correct procedures are followed every time;
• more errors being captured by the verification and validation process,

because tracing tools ensure that all requirements are implemented and
because test tools help ensure that the software is thoroughly tested.

Examples of productivity improvements are:
• software models can be created and modified more quickly;
• problems in code can be more quickly diagnosed with debuggers;
• performance problems can be quickly pinpointed with performance

analysers;
• regression testing can be much faster with tools that run the tests,

retrieve expected output data for comparison, compare actual output
data with expected, and then report the result.

In summary, there are many mechanical tasks in software
engineering that are simple in concept but complex in detail, because of the
need to be consistent, complete and accurate in activities that have many
small steps. Product quality is significantly reduced if they are not done well.
CASE tools improve quality and productivity by automating these tasks.

An initial drop in productivity should be expected when software
engineers start to use CASE tools, particularly when there is no experience in
the method that the tools support. The loss of output can be minimised with
proper training and will be more than recovered later. However, without
training, productivity can fall and never recover!

BSSC(94)1 5
CONCEPTS, BENEFITS AND STRATEGY

2.4 STRATEGY

To realise the benefits of CASE, organisations should adopt the
following strategy :
1. define the software engineering process, then;
2. choose methods suitable for each activity in the process, then;
3. evaluate and select the tools to support the methods, then;
4. train software engineers to use the methods and tools.

 The ESA PSS-05-0 standard defines ESA”s software engineering
process. At the top level this process consists of a life cycle containing the
following phases:
• user requirements definition phase;
• software requirements definition phase;
• architectural design phase;
• detailed design and production phase;
• transfer phase;
• operations and maintenance phase.

Procedural activities in each phase of the life cycle are:
• software project management,
• software configuration management,
• software verification and validation,
• software quality assurance.

Projects should define a process model that details the inputs,
outputs, methods, procedures, roles and responsibilities associated with
these phases and activities. Figures 2.4A, B and C are example process
models showing the inputs and outputs of each activity in the SR, AD and
DD phases of a project.

Figure 2.4A: SR phase process model

Figure 2.4B: AD phase process model

6 BSSC(94)1
CONCEPTS, BENEFITS AND STRATEGY

Figure 2.4C: DD phase process model

A method defines the rules and procedures associated with an
activity. For example Structured Analysis is a method for constructing a
logical model and Performance, Evaluation and Review Technique (PERT) is
a method for project planning. The choice of method depends upon the
application domain (e.g. different methods are normally used for designing
real time systems and non-realtime systems). There are many methods in
the software engineering literature. Projects should use methods that are
well documented and proven through industrial experience, and not invent
new methods unless there is no alternative. New methods lack tool support
and are more likely to contain errors. The ESA PSS-05 series of guides
discusses the methods for supporting the activities defined in the ESA
Software Engineering Standards.

The ESA PSS-05 guides discuss the general capabilities of tools.
Specific tools are not discussed as ESA has a policy of not identifying
commercial products. ESA PSS-05-0 does not state that specific methods
or tools must be used, but it strongly recommends that projects use CASE
tools for:
• constructing the logical model in the software requirements definition

phase (Part 1, Section 3.3.1)
• constructing the physical model in the architectural design phase (Part

1, Section 4.3.1)
• configuration management (Part 2, Section 3.2.2).

There are many other activities in the software life cycle that may be
supported by tools. Word processors, compilers and linkers are obvious
necessities that need no specific recommendation.

The evaluation and selection of tools can be a complex process
because of the wide range of tools now available. A systematic process of
evaluation and selection, such as the process described in Chapter 5, is
strongly recommended.

New methods and tools require time and training to assimilate.
Organisations adopting new methods and tools should train their staff.
Project managers should assess training requirements when planning the

BSSC(94)1 7
CONCEPTS, BENEFITS AND STRATEGY

project and set aside resources for it if necessary. Lack of training in
methods and tools is a risk.

8 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

CHAPTER 3
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.1 INTRODUCTION

This chapter defines the functions of the different types of CASE
tools. Figure 3.1 identifies the tools and shows where they may be used in
the life cycle. Software production tools support the production of the URD,
SRD, ADD, DDD, code and SUM. The other four categories of tools support
the procedural activities common to each phase.

Phase

Activity

Software
Project
Management

Software
Configuration
Management

Software
Verification
and
Validation

Production

User
Requirements
Definition

Software
Requirements
Definition

Architectural
Design

Detailed
Design and
Production

Transfer Operations
and
Maintenance

project planning tools process modelling tools
software cost estimation tools process support tools

risk analysis tools

librarian tools
problem handling tools

repositories
document management tools

tracing tools

debuggers
test harness tools

static analysers

comparators

coverage analysers
performance analysers
test management tools

test case generators

semantic analysers

requirements management tools

prototyping tools

modelling tools

code generators
language sensitive editors
compilers
linkers
documentation generators

build tools
installation tools

Software

reverse
engineering

tools

program proof tools

Software
Quality
Assurance

potentially all tools

documentation tools

project reporting tools

Figure 3.1: Tool use in the software life cycle

The ESA PSS-05 series of guides to software engineering [Ref 2 to
9] discuss tools in detail. This chapter summarises those guidelines. Section
3.2 describes tools for supporting software production, phase-by-phase.
Section 3.3 describes tools for supporting the procedural activities.

BSSC(94)1 9
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.2 TOOLS FOR SOFTWARE PRODUCTION ACTIVITIES

The tools for software production are introduced in order of the
stage in the life cycle where they are first used. A tool is reintroduced if
additional capabilities are required in the phase after it is first used.

3.2.1 User Requirements Definition Phase

The purpose of the user requirements definition phase is to refine an
idea of a task to be performed, using computer equipment, into a definition
of what is expected from the computer system [Ref 1]. Tools are useful in
the user requirements definition phase for:
• documentation;
• managing user requirements;
• constructing prototypes.

3.2.1.1 Documentation Tools

Documentation tools include:
• text editors;
• word processors;
• desktop-publishing systems.

A project should standardise on a single documentation tool for
producing documents and plans. The documentation tools should allow the
creation of structured documents and be able to interface with as many of
the other tools as possible. The documentation tools should be able to
import and export text in a standard format (e.g. ASCII).

Graphics tools may be part of the documentation tool or separate
from it. These should be able to import and export graphic data in a
standard format (e.g. CGM). Projects should standardise on a single
graphics tool for producing diagrams for documentation.

3.2.1.2 Requirements Management Tools

Requirements management tools should support the:
• entry, inspection, update and deletion of requirements;
• attachment of attributes to requirements;
• control of access to requirements;

10 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

• tracking of changes to requirements;
• search and retrieval on requirement text or attribute value;
• definition of dependencies for the purposes of structuring and tracing.

Requirement management tools are sometimes called
“requirements engineering” tools. For medium to large projects, a tool to
manage requirements is invaluable. A thousand or more requirements may
be defined in a large project, at which point manual requirements
management becomes both error-prone and time-consuming.

3.2.1.3 Prototyping Tools

Tools that help construct prototypes can be useful for exploring the
user requirements. Prototype menus, forms and reports can help define the
user requirements for human computer interaction for example. Minimal
programming should be required to create an effective prototype.

Simple prototyping tools can produce “static” prototypes that mimic
the look and feel of the real software. More advanced prototyping tools will
contain commercial software packages and code generators to implement
software functions, such as data retrieval. The prototyping tools should not
be expected to produce software that has the required performance.

3.2.2 Software Requirements Definition Phase

The purpose of the software requirements definition phase is to
analyse the statement of user requirements and produce a set of software
requirements as complete, consistent and correct as possible [Ref 1]. Tools
are useful in the software requirements definition phase for:
• constructing the logical model;
• constructing prototypes;
• managing software requirements.

3.2.2.1 Modelling tools

The logical model defines what the software must do. Methods and
tools should be used to construct it. The methods identified in ESA PSS-05-
03 Guide to the Software Requirements Definition Phase [Ref 4] are:
• functional decomposition;
• structured analysis;

BSSC(94)1 11
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

• object-oriented analysis;
• formal methods;
• Jackson System Development [Ref 24].

Some of these methods are really a class of methods. Structured
analysis includes the methods of De Marco [Ref 21], Ward-Mellor [Ref 23],
SSADM [Ref 22] and SADT [Ref 25]. Object-oriented analysis includes the
methods of Coad-Yourdon [Ref 26], Rumbaugh [Ref 27], Shlaer-Mellor [Ref
29, 30] and Booch [Ref 28].

Each method can include several techniques. For example the
Yourdon method includes data flow diagrams and data dictionary. Ideally
the CASE tool should support all the techniques of the chosen method. The
tool should enforce the rules of the method.

When two or more tools are required to support a method, the tools
should be well integrated and able to share data. Poorly integrated tools
make a consistent logical model difficult to construct. For example, a tool to
support data flow diagrams will normally have an underlying data dictionary.
If a separate tool is used for entity-relationship diagrams, the data dictionary
should nevertheless be common. Without this, inconsistencies will appear in
the logical model, even though the tools make their own parts of the model
consistent.

Modelling tools should be able to interface to the documentation
tool used for preparing the software requirements document. Export or
linking of diagrams produced by the tool into the SRD should be possible.

Some modelling tools support “animation”, i.e. simulation of
behaviour. This can be a very effective method for verifying the logical
model. Animation requires that the tool supports the construction of a
dynamic model. State transition diagrams are the most common technique
for dynamic modelling.

Formal methods for constructing a logical model in mathematical
terms are available. Examples of formal methods are LOTOS, Z and VDM
[Ref 32]. Some of these methods, such as LOTOS, are supported by tools.
The tools need to support the construction of mathematical expressions and
to be able to check the syntax of an expression.

12 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.2.2.2 Requirements Management Tools

Requirements management tools, described in Section 3.2.1., can
also be useful for handling software requirements. Ideally the tool should
interface to the modelling tool so that the functional requirements and
interface requirements can be derived directly from the model. It should be
possible to extract the software requirements from the tool for insertion into
the software requirements document.

A Requirements Management tool should help trace software
requirements to user requirements and vice-versa, thus providing the
compliance table required in the Software Requirements Document.

3.3.3.13.2.3 Architectural Design Phase

The purpose of the Architectural Design Phase is to define a
collection of software components and their interfaces to establish a
framework for developing the software [Ref 1] Tools are useful in the
architectural design phase for constructing the physical model and
prototyping.

3.2.3.1 Modelling Tools

The physical model is the core of the architectural design. Methods
and tools should be used to construct it. The methods identified in ESA
PSS-05-04 Guide to the Software Architectural Design Phase [Ref 5] are:
• structured design;
• object-oriented design;
• formal methods;
• Jackson System Development [Ref 24].

The first three of these methods are classes of methods. Structured
design includes the methods of Yourdon [Ref 33], Ward-Mellor [Ref 23],
SSADM [Ref 22] and SADT [Ref 25]. Object-oriented design includes the
methods of Booch [Ref 28], HOOD [Ref 31], Coad-Yourdon [Ref 26],
Rumbaugh [Ref 27] and Shlaer-Mellor [Ref 29, 30].

Each method can include several techniques. For example the
HOOD method includes design process tree diagrams and object definition
skeletons. Ideally the modelling tool should support all the techniques of the
chosen method. The tool should enforce the rules of the method selected.

BSSC(94)1 13
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

If two or more tools are required to support all the techniques of a
method, then it is important that the tools be well integrated and able share
data. Poorly integrated tools make a consistent physical model difficult to
construct.

Modelling tools should be able to interface to the word processor
used for preparing the architectural design document. Export or linking of
diagrams produced by the tool into the ADD should be possible.

Modelling tools need to be able to interface with the tools used for
constructing the logical model. Some methods, such as structured design,
provide techniques for transforming a logical model into a physical model,
for example. Even if direct transformation is not possible, the capability to
link components of the physical model to functions, data and objects in the
logical model should be provided.

Some modelling tools support “animation”, i.e. simulation of
behaviour (see Section 3.2.2.1). This can be a very effective method for
verifying the physical model.

3.2.3.2 Prototyping Tools

Tools can also be used for constructing experimental prototypes to
test the feasibility and performance of the design. Two designs may be
equally feasible on paper and prototyping may be needed to decide which is
the better.

3.2.4 Detailed Design and Production Phase

The purpose of the Detailed Design and Production Phase is to
detail the design outlined in the architectural design document and to code,
document and test it [Ref 1].

Tools are useful in the detailed design and production phase for:
• detailed design;
• code generation;
• editing code;
• compiling;
• linking;
• building;
• documentation generation.

14 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

Testing is a major activity in this phase. Testing tools are
discussed in Section 3.3.3.

3.2.4.1 Detailed Design Tools

The methods and modelling tools used for architectural design
should be used in the DD phase for the detailed design work [Ref 1].
Supplementary tools may be needed to support use of the Program Design
Language (PDL).

3.2.4.2 Code Generators

There are two types of code generator:
• modelling tools that can produce skeleton code or “templates”

containing module headers and data declarations;
• full code generators that produce all the necessary code from a model.

Full code generators are helpful for producing repetitive code.
Database management and human-computer interaction are typical
applications of full code generators.

Code produced by full code generators is unlikely to comply with
project coding standards and be commented. This may be a problem if
software engineers have to examine the generated code to diagnose the
cause of a software fault. The relationship between the code and the model
may not be obvious. Debuggers, used for examining running code, normally
operate at the level of the generated code and not at level of the modelling
tool. Problems in understanding the generated code can also arise when
software engineers have to write code that interfaces with the generated
code.

3.2.4.3 Language-Sensitive Editors

Language-sensitive editors provide statement templates for the
programmer to complete, and check that each statement entered is
syntactically correct.

Some editors are integrated with librarian tools to allow
programmers to “browse” module libraries. A template procedure call for a
library module can be copied into the module being coded for completion
by the programmer.

BSSC(94)1 15
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

Editors may be integrated with the compiler and linker to allow
incremental compilation and linking of the code. Not only is the syntax of
each line of code checked as it is entered, but also the code is ready to
execute almost immediately.

3.2.4.4 Compilers

The choice of compiler on a given platform or operating system may
be limited. If there is a choice, aspects to be considered are:
• compliance with language standards;
• efficiency of compiling;
• efficiency of code generated by the compiler;
• integration with other tools (e.g. debuggers and performance

analysers).

A precompiler generates code from PDL statements. However it is
difficult to trace faults in the source code to PDL statements because
debuggers are usually not available for precompilers. This problem is shared
with Code Generators (see Section 3.2.4.2).

3.2.4.5 Linkers

 As with compilers, the choice of linker on a given platform or
operating system may be very limited. The linker should be capable of
making standalone or shared executables, and minimise the size of the
program executable for efficient loading. Link commands can be very
complex, and the linker should accept its parameters from control files as
well as the command line.

3.2.4.6 Build tools

Build tools vary from simple procedures that compile and link
programs to “make” tools that use information about the history and
dependencies of the modules to minimise the build time. For example in
most builds it is only necessary to compile the source modules that have
changed or are affected by a change (e.g. an include file change may affect
many modules). Efficient build tools are essential for reducing the mean time
to repair of large systems.

16 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.2.4.7 Documentation Generators

Documentation generators may produce:
• source module header information from the Detailed Design Document

and vice versa;
• help documentation from the Software User Manual and vice versa.

Documentation generators help maintain consistency between
code and documentation, and make the process of documentation truly
concurrent with the coding.

Code generators (see Section 3.2.4.2) may include tools for
automatically generating documentation about the screens, windows and
reports that the programmer creates.

3.2.5 Transfer Phase

The purpose of the transfer phase is to install the software in the
operational environment and show to the users that it meets their
requirements [Ref 1]. Besides tools used in the previous phases, tools are
useful in the transfer phase for:
• installing the software;
• acceptance testing the software.

When problems are found, tools from the previous phases will be
required to re-specify, re-design, re-code, re-build and re-test the software.
Tools for testing are discussed in Section 3.3.3.

3.2.5.1 Installation Tools

Installation tools transfer software from distribution media into the
target environment and configure it for the new software. Minimal
intervention should be required from the user. The installation tools should
not make system changes without permission.

3.2.6 Operations and Maintenance Phase

The purpose of software maintenance is to ensure that the software
continues to meet the needs of the end users. All the CASE tools used in the
previous phases will be needed. The software engineering environment of
the development phase should therefore be retained, sized adequately for

BSSC(94)1 17
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

the maintenance team. Consideration should be given to improving the
software engineering environment as new tools become available.

The need may arise during the operations and maintenance to
“reengineer” the code. Reverse engineering tools may be used to support
this activity.

3.2.6.1 Reverse Engineering Tools

Reverse engineering tools reconstruct the software design from the
source code. They are useful for:
• understanding poorly documented software;
• keeping documentation up to date with code changes;
• redesigning poor quality software.

Reverse engineering tools may support efficient “navigation”
through the software. This helps to identify what parts of the software will be
affected by a change.

3.3 TOOLS FOR SOFTWARE PROCEDURAL ACTIVITIES

This section discusses CASE tool support for the activities of:
• software project management;
• software configuration management;
• software verification and validation;
• software quality assurance.

3.3.1 Software Project Management

Software project management is the process of planning,
organising, staffing, monitoring, controlling and leading a software project
[Ref 12]. Software project management may be supported by:
• project planning tools;
• software cost estimation tools;
• risk analysis tools;
• process modelling tools;
• process support tools;
• project reporting tools.

18 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.3.1.1 Project Planning Tools

Project planning tools should support the definition of the project
activities, the resources they need, and the relationships between them. The
tools should use this information to display:
• activity schedules (e.g. Gantt charts, PERT networks, or equivalent)
• resource utilisation in resource profiles and summary tables.

 In practice, capturing all the dependencies between software
project activities can be very difficult, limiting the usefulness of the tools.
However planning tools can be very useful for displaying the schedule,
calculating resource usage and checking resource conflicts. The value of
project planning tools is also apparent when updating plans or assessing
new scenarios (i.e. “what-if” analysis).

3.3.1.2 Software Cost Estimating Tools

Software cost estimating tools can be used to predict labour costs
and project duration. Typical inputs are specifications of functions and
numbers of lines of code. Accurate software cost estimation is very difficult
and tools are only of limited benefit.

Some methods, such as Function Point Analysis (FPA) and
Boehm”s Constructive Cost Model (COCOMO) use empirical formulae to
derive the prediction. Spreadsheets can be used to implement these
methods. The tools should be calibrated for the organisation using them,
otherwise results are unlikely to be accurate.

Other methods use historical comparisons to arrive at a result.
Database management tools and knowledge-based systems can be useful
for supporting these methods.

3.3.1.3 Risk Analysis Tools

Risk analysis tools have been applied in other fields, but difficulties
in accurately quantifying software project risks limits their usefulness.

One approach to risk analysis is to use heuristics or
“rules-of-thumb”, derived from experience. Tools are available that have
been programmed with the rules related to common risks to a software
project. The tools ask a series of questions about the project and then report
the most likely risks. Again, these kinds of tools have been rarely used in
software development.

BSSC(94)1 19
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.3.1.4 Process Modelling Tools

A software process model defines the roles, responsibilities,
methods, procedures, inputs and outputs associated with software life cycle
activities. As explained in Section 2.4, projects must base their software
process model upon the ESA PSS-05-0 life cycle model. Projects must
define the process in more detail when they make a project plan.

Process modelling methods are relatively new, and the tools that
support them are consequently immature. Process modelling tools should:
• support the definition of procedures;
• contain a library of “process templates” that can be tailored to each

project;
• make the process model available to a process support tool (see

Section 3.3.1.5).

There are few dedicated software process modelling tools. Analysis
tools that support the structured analysis techniques of data flow diagrams
and entity relationship diagrams can be effective substitutes.

3.3.1.5 Process Support Tools

Process support tools help guide, control and automate project
activities. They require that a process model has been formally defined, and
made available in a suitable format for input to the process support tools.

Some configuration management tools provide process support
functions by automating the exchange of information about software
problems and change requests. Groupware products can provide process
support functions as they supply information exchange facilities for the
members of a workgroup. Project management is one area that could
substantially benefit because progress could be controlled and monitored
be means of electronic messaging.

3.3.1.6 Project Reporting Tools

Progress tables and charts are used for reporting work package
expenditure and presenting current estimates of the resources required for
the project. Spreadsheets are useful for constructing them.

20 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

Project planning tools (see Section 3.3.1.1) that are capable of
recording the actual resources used, and the dates that events occurred,
can be useful for project reporting. Such tools should use the information to:
• mark up the Gantt chart to indicate schedule progress;
• constrain replanning.

3.3.2 Software Configuration Management

Software configuration management [Ref 1] is the activity of:
• identifying and defining the configuration items in a system;
• controlling the release and change of these items throughout the

system life cycle;
• recording and reporting the status of configuration items and change

requests;
• verifying the completeness and correctness of configuration items.

Configuration management may be supported by a single tool or a
set of tools such as:
• librarian tool;
• repository tool;
• document management tool;
• problem handling tool.

A toolset needs to be well-integrated because the configuration
management functions are highly interdependent.

Configuration management tools should support the security policy
of a project by allowing changes to configuration items to be made only by
authorised personnel.

3.3.2.1 Librarian Tools

Basic librarian tools store configuration items of the same type in
the same library (e.g. source files in text libraries, object files in object
libraries), and coordination of the libraries must be done manually.

Basic librarian tools do not allow more than one version of a
configuration item to be stored. More advanced librarian tools store multiple
versions by keeping a complete copy of one version and the changes

BSSC(94)1 21
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

needed to generate all the other versions from it. This minimises storage
space requirements

3.3.2.2 Repository Tools

Repository tools should be capable of storing all the versions of
every configuration item in the system. They store the history of configuration
items and the relationships between them. Repository tools use this
information to make rollback and update of software easy and efficient.

3.3.2.3 Document Management Tools

Document management tools should be capable of storing all the
versions of every document configuration item in the system. They should
be able to manage document images as well as computer files.

3.3.2.4 Problem Handling Tools

Problem handling tools should support the online entry of data
describing a problem and the processing of that data by the software
development and maintenance teams. They should maintain information
about all the problems that have ever been reported. They should provide a
variety of ways of viewing the problem information, such as listings of all
problems that are open, and configuration items that have open problem
reports against them.

3.3.3 Software Verification and Validation

Software verification is “the act of reviewing, inspecting, testing,
checking, auditing, or otherwise establishing and documenting whether or
not items, processes, services or documents conform to specified
requirements” [Ref 1]. Software validation is “the evaluation of software at
the end of the software development process to ensure compliance with
user requirements” [Ref 1].

Software verification and validation may be supported by tools such
as:
• tracing tools;
• comparators;
• static analysers;
• test case generators;
• test harnesses;

22 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

• debuggers;
• performance analysers;
• coverage analysers;
• test management tools;
• program proof tools;
• semantic analysers.

Tool support for test case generation is currently weak. Tool support
is strongest in the areas of comparison, static analysis, running tests,
debugging, analysing the results and managing test software. Tools should
do most of the mechanical or repetitive work involved in software verification
and validation.

3.3.3.1 Tracing Tools

Tracing tools should allow easy and efficient navigation through the
documentation and code. The arrows in Figure 3.3.3.1 show the
relationships that need to be traced.

Tracing tools, normally applications based upon commercial
database management systems, are used to build relationship databases.
In addition, the database may form part of, or be integrated with, a
repository.

INTEGRATION
TESTS

SYSTEM
TESTS

ACCEPTANCE
TESTS

UNIT
TESTS

for tracing

Key

Activity

1

2

3

4

5

6

7

8

CODE

DETAILED
DESIGN

ARCHITECTURAL
DESIGN

SOFTWARE

REQUIREMENTS

SRD

USER
REQUIREMENTS

URD 9

ADD

DDD SVVP/UT

SVVP/IT

SVVP/ST

SVVP/AT

Relation

5

 Figure 3.3.3.1: Relationships for tracing

BSSC(94)1 23
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

 A simpler alternative to using a database management system is to
employ the indexing and cross-referencing facilities of a word processor.
However with this technique the relationship database (i.e. the
cross-reference matrices) becomes fragmented amongst different
documents, and maintaining consistency is a problem.

Requirements management tools (see Section 3.2.1.) should
support the tracing of software requirements to user requirements and vice-
versa. The requirements management tool may also permit tracing
requirements to design components, i.e. the requirements management tool
also functions as a tracing tool. A single tool that manages the relationships
between requirements, software components, test cases, test procedures
and test results is preferable.

3.3.3.2 Comparators

A comparator is a software tool used to compare two documents,
source code modules, files, or sets of data, to identify commonalities and
differences.

Comparators are needed for marking changes to documents,
easing verification of the change. A document comparator may be part of
the documentation tool.

Comparators are needed in testing to compare actual test output
data with expected test output data. They are essential for efficient
regression testing.

3.3.3.3 Static Analysers

Static analysis tools measure software complexity (e.g. cyclomatic
complexity) and check the code against language standards and coding
standards. They should be used to support reviews of code and McCabe”s
Structured Testing method [Ref 35, 36]. Static analysis tools may provide
the control graph for coverage analysis tools (see Section 3.3.3.7).

3.3.3.4 Test Case Generators

Test case generators produce test cases and test data by
processing source files. They should support the equivalence partitioning
and boundary value analysis methods used in unit testing [Ref 8].
Automated test case generation at integration, system and acceptance test
level is not usually possible.

24 BSSC(94)1
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.3.3.5 Test Harnesses

Test harness tools control the software under test, providing test
inputs and reporting test results. They should provide a language for
programming test procedures (i.e. a script language).

3.3.3.6 Debuggers

Debuggers can be used for controlling and monitoring the
execution of the software. A good screen-based debugger should be used
in all software projects for white-box testing and problem diagnosis.

3.3.3.7 Coverage Analysers

Coverage analysers “instrument” the code so that information is
collected on the parts of it that are executed when it is run. After the test run,
the coverage analyser is used to see what parts of the software under test
have been executed. Coverage analysers are essential for verifying
statement and branch coverage. They are used mainly in unit testing. Some
coverage analysers mark up the control graph produced by the static
analyser, providing a graphic display of branch coverage.

3.3.3.8 Performance Analysers

Performance analysers instrument the code so that information can
be collected about resources used when it is run. After the test run, the
performance analyser is used to analyse the data collected, and to evaluate
resource utilisation. Performance analysers are often integrated with
coverage analysers to make “dynamic analysers”

3.3.3.9 Test Management Tools

Test management tools provide configuration management
functions for the test data and scripts. They enable tests to be setup and run
with the minimum of steps and automatically manage the storage of outputs
and results.

Significant software costs accrue during the operations and
maintenance phase of a project, and much of this is often due to the need
to test for regression after each change. Test management tools can be
used to reduce the cost of regression testing.

BSSC(94)1 25
CASE TOOLS IN THE SOFTWARE LIFE CYCLE

3.3.3.10 Program Proof Tools

Program proof tools may be used to prove the correctness of
programs written in languages that can be formally defined. Subsets of
Pascal and Ada are examples. There are very few commercial tools.

3.3.3.11 Semantic Analysers

 Semantic analysis is the symbolic execution of a program using
algebraic symbols instead of test input data. Semantic analysers use a
source code interpreter to substitute algebraic symbols into the program
variables and present the results as algebraic formulae. Semantic analysers
may be useful for the verification of small well-structured programs.

3.3.4 Software Quality Assurance

Software Quality Assurance (SQA) is “a planned and systematic
pattern of all actions necessary to provide adequate confidence that the
item or product conforms to specified requirements” [Ref 13]. SQA activities
evaluate the process by which products are developed [Ref 14].

All the software tools used for other activities in the life cycle can be
used to support SQA activities. For example:
• software configuration management tools may be used to obtain a

change history (i.e. “audit trail”);
• coverage analysers and test management tools may be used to obtain

access to the test coverage and test results;
• static analysers may be used to compare code with language and

coding standards.

SQA staff may choose to employ tools different to those used by the
developers, in order to gain increased independence and objectivity. For
example they might choose to use a static analysis tool different to that of
the developers because it provides them with the measurements they want,
or because they are more familiar with its operation.

26 BSSC(94)1
SOFTWARE ENGINEERING ENVIRONMENTS

CHAPTER 4
SOFTWARE ENGINEERING ENVIRONMENTS

4.1 INTRODUCTION

A Software Engineering Environment (SEE) is “a system that
provides automated support of the engineering of software systems and the
management of the software process” [Ref 10]. Another name often used
for an SEE is “Software Development Environment“ (SDE). No distinction is
made between the terms SEE and SDE in this guide.

An SEE is an integrated set of CASE tools that supports most, if not
all, life cycle activities. The functions and interfaces of an SEE are defined by
the process model (see Chapter 2).

Section 4.2 defines SEE design concepts. Section 4.3 introduces
SEE Reference Models. Section 4.4 discusses CASE tool integration.
Section 4.5 describes the European Space Software Development
Environment (ESSDE), a practical example of an SEE implemented by ESA.

4.2 SEE DESIGN CONCEPTS

A Software Engineering Environment normally consists of:
• a framework;
• CASE tools.

A framework provides a set of (relatively) fixed infrastructure
capabilities such as user interface, database management and storage.
This simplifies tool design and improves usability [Ref 10]. Frameworks
normally use the repository tool for database management and storage (see
Section 3.3.2.2). They often designate a user interface standard for all tools,
such as X Windows, instead of providing user interface capabilities directly.

CASE tools are a necessary part of any SEE. A framework is
optional. Tools may exchange information directly without the mediation of a
framework, for example. Each tool may have its own user interface and
database.

BSSC(94)1 27
SOFTWARE ENGINEERING ENVIRONMENTS

The designer of an SEE must consider [Ref 15]:
• data integration;
• control integration;
• presentation integration.

The degree of data integration measures the ability of the tools to
exchange information and use the information exchanged, i.e. it measures
interoperability. Data integration requires not only that tools can export and
import data to and from other tools, it also requires that the tools understand
what the data means, and can use the data correctly. Data integration may
be implemented via database linkages, data exchange or a common
repository (i.e. shared database).

The degree of control integration measures the ability to combine
the functionalities offered by the tools. For example, when a new source
module is submitted for inclusion in a master library, the software
configuration management tool may use the compiler and the linker tools to
generate the corresponding object module and executable program. This
implies that the configuration management tool is able to control the
compiler and linker.

The degree of presentation integration measures the ability of the
user to interact with the tools in similar modes, and is critical to its usability.
Presentation integration requires the adoption of a user interface standard,
such as “X Windows”, to provide a consistent “look and feel”.

4.3 REFERENCE MODELS

The design of an SEE should be based upon a standard reference
model to make it an “open” system. The SEE Reference Model developed
by the European Computer Manufacturers Association and the US.
Department of Commerce is shown in Figure 4.3 [Ref 11]. The model
defines a framework of common basic services. Tools, such as compilers
and linkers, use the services of the framework. They are pictured as fitting
into tool “slots”, giving this model the nickname of “the toaster model”.

The interactions between users and the tools are mediated by the
user interface services and coordinated by the process management
services. The object management services provide a common repository for
sharing tool information. Communication services support the message
passing between the objects in each service group. Policy enforcement,

28 BSSC(94)1
SOFTWARE ENGINEERING ENVIRONMENTS

administration and configuration services, not shown, provide access
control and system management services. The services are summarised in
Table 4.3.

User Interface Services

Communication Services

Process Management Services
Tool Slots

Object Management Services

+ Policy Enforcement Services
+ Framework Administration and Configuration Services

Figure 4.3: ECMA SEE Reference Model

Service Purpose

Object Management definition, storage, maintenance, management and
access of object entities and the relationships among
them

Process Management definition and performance of software engineering
activities across the software life cycle

Communication provision of a standard inter-tool and inter-service
communication mechanism

User Interface provision of the interface between users and the
different components of the environment

[CASE] Tool support a particular application

Policy Enforcement enforcement of security and integrity

Administration and
Configuration

registration and collection of administrative data

Table 4.3: ECMA Model Services

BSSC(94)1 29
SOFTWARE ENGINEERING ENVIRONMENTS

4.4 CASE TOOL INTEGRATION STANDARDS

Commonly used standards for CASE tool integration are:
• CASE Data Interchange Format (CDIF), a standard for exchanging data

between modelling tools;
• Portable Common Tools Environment (PCTE), a standard for integrating

tools into an SEE.

4.4.1 CASE Data Interchange Format

The CASE Data Interchange Format (CDIF) is an industry standard
for exchanging data between CASE tools [Ref 16]. CDIF permits data
integration. The CDIF standard defines the format for:
• data flow diagrams;
• entity relationship diagrams;
• data dictionaries;
• process specifications;
• structure charts;
• state transition diagrams;
• cross reference matrices;
• Ada structure graphs;
• pictures;
• notes.

The objects listed above are produced by structured analysis and
design methods. Modelling tools supporting structured analysis and design
methods should be able to import and export information in CDIF.

4.4.2 Portable Common Tools Environment

The Portable Common Tools Environment (PCTE) is the European
computer manufacturers standard for the integration of CASE tools. PCTE is
now gaining wider international recognition.

PCTE is “an interface to a set of facilities that forms the basis for
constructing environments”. The facilities are designed to provide an
infrastructure for tools. PCTE therefore defines the interface between an SEE
framework and the CASE tools in the SEE.

30 BSSC(94)1
SOFTWARE ENGINEERING ENVIRONMENTS

Facilities are defined generically in ECMA-149 “PCTE Abstract
Specification” [Ref 17] and specifically for the C and Ada programming
languages in ECMA-158 and ECMA-162 [Ref 18 and 19]. Key components
of PCTE are the:
• Object Base, which is the repository of the data used by the tools;
• Object Management System, which provides the functions used to

access the object base.

The ECMA Reference Model (see Section 4.3) defines the
requirements for an SEE. The PCTE specifications provide the detailed
design.

The benefits of PCTE for software engineers are:
• good control and data integration between tools;
• good presentation integration because of the use of the X standard;
• easy reuse of designs, code and documentation.

Tools that comply with the PCTE standard should be preferred.
Although currently few tools and frameworks comply with PCTE standard,
the trend seems to be increasing adoption of it.

4.5 THE ESSDE

In 1987, as a result of initiatives by the ESA Technical Directorate
and the Columbus and Hermes programmes, and recommendations by the
ESA Board for Software Standardisation and Control (BSSC), the concept of
a “European Space Software Development Environment” (ESSDE) was
formulated. The ESSDE was entrusted to a working group consisting of
representatives from the Columbus and Hermes programmes, the European
Space Operations Centre, and the ESA Technical Directorate.

The working group produced a URD and an SRD for the ESSDE and
investigated areas of the software life cycle which required more detailed
definition. A series of reports covering some areas of the software life cycle
were produced and a detailed software process model was defined. A
detailed evaluation exercise of five systems concluded that current SEE
technology, although usable and reliable, was:
• not capable of being easily adapted to provide advanced features;
• difficult to integrate because it did not support standards.

BSSC(94)1 31
SOFTWARE ENGINEERING ENVIRONMENTS

The working group proposed that an ESSDE Reference Facility
should be created to provide a baseline for ESA projects. This is composed
of two commercial SDE”s, (“Concerto” and “Rational”), supplemented by
other commercial tools. Some custom software is included to ensure
compatibility with the ESA Software Engineering Standards and to improve
integration between the Concerto and Rational platforms.

The ESSDE Reference Facility can be used to:
• demonstrate SEE capabilities;
• demonstrate recommended software methods and procedures;
• produce software according to ESA PSS-05-0 standards;
• provide training;
• evaluate new tools, methods and procedures.

Five important lessons can be learnt from the ESSDE project:
• current SDE technology, although mature, has little growth potential and

is difficult and costly to integrate;
• a detailed process model specifying the inputs, outputs, methods and

roles associated with every process is essential for the definition of an
effective SEE;

• an organisation can benefit from centrally negotiated SEE procurement,
installation and maintenance arrangements;

• training in the use of an SEE is essential;
• external support is required for the commercial software.

32 BSSC(94)1
EVALUATION AND SELECTION OF CASE TOOLS

CHAPTER 5
EVALUATION AND SELECTION OF CASE TOOLS

5.1 INTRODUCTION

A systematic approach to the evaluation and selection of CASE
tools should be adopted by projects. Normally the software project manager
is responsible for the evaluation and selection of CASE tools. However
organisations running multiple projects developing similar software products
can achieve economies of scale by evaluating and selecting CASE tools
centrally.

The evaluation and selection process is illustrated in Figure 5.1. The
methods to be used for software projects, such as object-oriented analysis,
are the primary input. These define the capabilities required of the tools. The
local environment imposes constraints on aspects such as cost, platform,
user interface and ability to integrate with other tools. The evaluation stage
combines the capabilities and constraints into a set of “evaluation criteria”,
and then measures the tools against them. The output of this stage is an
evaluation report describing how the CASE tools measure up to the
evaluation criteria.

Evaluate

Tools

Select

Tools

Evaluation Report

Selection Report

Constraints

Thresholds and Weights

Capabilities

From methods

From environment

Figure 5.1: Evaluation and Selection Process

In the selection stage, thresholds and weights are applied to the
measurements to arrive at a decision as to which CASE tools (if any) will be
selected.

An efficient way to evaluate and select tools is often to define first
the key criteria and survey a wide range of tools. The tools meeting the key
criteria are then shortlisted for a second round of evaluation and selection,

BSSC(94)1 33
EVALUATION AND SELECTION OF CASE TOOLS

which evaluates the shortlisted tools against all the criteria. The second
stage of evaluation may include demonstrations and tests.

Sections The guidelines should be tailored according to cost and
complexity of the tools required.

5.2 and 5.3 discuss evaluation and selection in more detail. Much of
the discussion is based upon the IEEE Recommended Practice for the
Evaluation and Selection of CASE tools [Ref 10]. The IEEE Standard
conceives of both a standalone evaluation process and a standalone
selection process, as well as a compound process. The description of
evaluation and selection below reflects this. The guidelines should be
tailored according to cost and complexity of the tools required.

5.2 EVALUATION OF CASE TOOLS

Evaluation is a measurement process. The steps of the process are:
• plan the evaluation;
• define the evaluation criteria;
• identify candidate tools;
• collect data about CASE tool products;
• compare tool data with the evaluation criteria;
• produce the evaluation results.

The plan for the evaluation should define the purpose and scope of
the evaluation, identify assumptions and constraints, and list evaluation
activities. Thorough evaluation can require a large amount of effort and
careful planning and control is needed.

The process model defines the process to be supported by the
CASE tools. Evaluation criteria can be formulated in the same style as user
requirements [Ref 3]. The criteria should be based upon:
• capabilities required by the process model (e.g. activity and method

support);
• additional capabilities not directly implied by the process model (e.g.

performance);
• constraints forced by the local environment (e.g. platform, cost);
• additional constraints (e.g. user interface, documentation).

34 BSSC(94)1
EVALUATION AND SELECTION OF CASE TOOLS

Examples of evaluation criteria are:
• supports activity “A” (e.g. regression testing);
• supports method “B” (e.g. Ward-Mellor structured analysis and design);
• performs all updates of a model within “C” seconds (performance

capability);
• runs on platform “D” (platform constraint);
• provides online help (documentation constraint);
• technical support is available (constraint);
• training courses are available (constraint);
• has at least “E” existing users (constraint).

A checklist should be made from the evaluation criteria.

The next steps are to identify tools that might support the
requirements and to collect data about them. This information should be
stored in a database. Data collection may involve:
• examining CASE tool literature;
• interviewing users of the tools;
• viewing demonstrations of the tools;
• testing the tools.

The tool data is then used to complete an evaluation checklist for
each tool. The degree of conformance of a tool to each criterion should be
measured numerically. A matrix may be assembled from the checklists to
ease comparison. The matrix should have one row for each criterion and
one column for each tool.

The next stage is to evaluate how the tools will work together as a
system. This stage uses the raw data from the preceding comparison stage
and the software engineering knowledge of the evaluators. Several possible
systems may be assembled from the tools. Some points to consider are
tool-to-tool:
• compatibility (e.g. can exchange and use each other”s data);
• consistency (e.g. common user interface).

Individual tools may comply with the requirements but not be
compatible or consistent with any of the other tools in the SEE. Any

BSSC(94)1 35
EVALUATION AND SELECTION OF CASE TOOLS

inconsistencies and incompatibilities should be highlighted in the final stage
of evaluation. The evaluators should contribute their own knowledge and
experience of the CASE tools to draw attention to their strengths and
weaknesses.

The last stage of the evaluation is to cost the possible toolsets.

The output of the evaluation is a report that should contain:
• a summary of the evaluation activities;
• summary tool data (name, version, vendor, functions, platforms, cost

elements, standards supported);
• completed checklists or compliance matrices;
• summary and analysis of each system option;
• costs of each system option.

5.3 SELECTION OF CASE TOOLS

The selection process considers the evaluation report and defines
which CASE tools will be used. The separate measurements made in the
evaluation stage are filtered, weighted and combined to produce
recommendations.

The steps of the selection process are:
• plan the selection;
• identify selection criteria;
• apply selection algorithm;
• assess selection;
• make recommendations.

The selection process for a small project may be performed entirely
by the project manager. The selection process for the software engineering
environment of a large project may require formal reviews involving several
people. This may require planning.

The selection criteria come from:
• evaluation criteria;
• analysis of system options.

36 BSSC(94)1
EVALUATION AND SELECTION OF CASE TOOLS

Evaluation criteria may be ignored in the selection process because
they are not important (e.g. colour displays are not necessary) or because
they do not discriminate between tools (e.g. as when all the tools under
consideration run on the same platform).

The analysis of system options may result in additional selection
criteria (e.g. compatibility).

The selection algorithm is then applied. This may use one or more
of the following selection algorithms [Ref 10]:
• scale-based algorithm;
• rank-based algorithm;
• cost-based algorithm.

A scale-based algorithm calculates a single value for each CASE
tool by multiplying the weight given each criterion by its score (on a scale)
and adding all such products.

A rank-based algorithm orders the CASE tools according to their
scores and selects them according to their place in the order.

A cost-based algorithm identifies the minimum level of capability
acceptable and then ranks tools above that level in order of cost.

The results of the selection algorithm are then assessed. Scores
may be recalculated using different selection criteria and different weights to
check the sensitivity of the result to a particular criterion.

Final selection of all the tools early in the project may not be
possible, or even desirable. However the need to integrate tools and make a
cost estimate for the project forces the options to be evaluated and a
provisional selection to be made at the start. Ideally, the provisional
selection should be reviewed and a final selection made just before the start
of the phase in which the tool is first needed.

The option of not having tool support for a task should always be
considered. The cost of a tool may outweigh its benefits.

BSSC(94)1 37
EVALUATION AND SELECTION OF CASE TOOLS

The output of the selection process is a report that:
• defines the selection criteria;
• explains the selection algorithm;
• assesses the selection;
• recommends what CASE tools, if any, should be selected.

BSSC(94)1 A-1
GLOSSARY

APPENDIX A
GLOSSARY

A.1 LIST OF TERMS

The usage of all terms in this document is consistent with the other
ESA PSS-05 documents [Ref 1 to 9] and ANSI/IEEE Std 610.12-1990 [Ref
14]. Definitions of terms used in this document and not listed here may be
found in those references. Cross references between terms in the list are
identified by italics.

build tool

A software tool that compiles and links a software system.

code generator

A software tool that accepts as input the requirements or design for a
computer program and produces source code that implements the
requirements or design [Ref 14].

comparator

A software tool that compares two computer programs, files or sets of data
to identify commonalities or differences [Ref 14].

compiler

A computer program that translates programs expressed in a high order
language into their machine language equivalents [Ref 14].

computer aided software engineering tool

A software tool that aids in software engineering activities, including but not
limited to requirements analysis and tracing, software design, code
production, testing, document generation, quality assurance, configuration
management and project management [Ref 9].

coverage analyser

A software tool that supports the tracking of the path taken by the control
flow during execution with the object of determining what parts of the code
have been executed.

A-2 BSSC(94)1
GLOSSARY

cross-compiler

A compiler that executes on one computer but generates machine code for
a different computer [Ref 14].

debugger

A software tool to control and monitor the execution of a program with the
objective of detecting and locating faults in the program.

documentation generator

A software tool that supports the generation of documentation from models
and source code.

document management tool

A software tool that supports the storage and change control of documents,
and, optionally, handles document images as well as text and graphics.

dynamic analyser

A software tool that supports the process of evaluating a system or
component based upon its behaviour during execution [Ref 14]. A
combination of a coverage analyser and a performance analyser.

installation tool

A software tool that copies software from its distribution medium into the
target environment and configures the target environment for the new
software.

integrated project support environment

The support environment for projects developing systems of both software
and hardware. An IPSE for a software-only project is the same as a Software
Engineering Environment.

language sensitive editor

A software tool that allows the entry, alteration and viewing of source code,
checks the syntax of the source code, and provides template source code
statements for the programmer to complete.

BSSC(94)1 A-3
GLOSSARY

librarian

A software tool that supports the creation and maintenance of libraries of
software modules.

linker

A computer program that creates a single load module from two or more
independently translated object modules or load modules ... [Ref 14].

modelling tool

A software tool that supports the construction of a simplified description of
one or more of the functions, entities, data, states, components, behaviour,
control flow and data flow in the system.

method

The rules and procedures associated with an activity.

performance analyser

A software tool that supports the measurement of the computer resources
used by each part of the code during execution. Same as a profiler.

problem handling tool

A software tool that supports the online entry, storage and retrieval of
problem reports, change requests and modification reports

procedure

A course of action to be taken to perform a given task [Ref 14].

process

A sequence of steps performed for a given purpose [Ref 14].

process model

The procedures, inputs, outputs, roles and responsibilities, associated with
each process in a project.

A-4 BSSC(94)1
GLOSSARY

process modelling tool

A software tool that supports the definition of procedures, provides a library
of templates for process design, and produces the framework for defining
the work packages and workflow in the project.

process support tool

A software tool that helps guide, control and automate project activities.

profiler

See performance analyser.

program proving tool

A software tool that formally proves that code is logically correct.

project planning tool

A software tool that supports the definition of activities, resource
requirements, activity dependencies, activity start and end times, and uses
this information to construct activity networks and schedules.

prototyping tool

A software tool that supports the rapid development of software used for
exploring requirements or experimenting about technical feasibility.

repository

A software tool that stores every version of every configuration item in the
system, maintains a change history of each configuration item, and
maintains a database of the relationships between configuration items.

requirements management tool

A software tool that supports the entry, inspection, update and deletion of
requirements; attachment of attributes to requirements; control of access to
requirements; tracking of changes to requirements; search and retrieval on
requirement text or attribute value; definition of dependencies for the
purposes of structuring and tracing.

BSSC(94)1 A-5
GLOSSARY

reverse engineering tool

A software tool that accepts source code as input and outputs restructured
source code, or reformatted source code, or software design information.

risk analysis tool

A software tool that supports the identification and evaluation of the factors
that threaten the success of a project.

semantic analyser

A software tool that substitutes algebraic symbols into the program
variables and presents the output of the program as algebraic formulae.

software cost estimation tool

A software tool that supports the prediction of labour costs and project
duration.

software development environment

Same as software engineering environment

software engineering environment

A system that provides automated support of the engineering of the
software systems and the management of the software process [Ref 10]. An
SEE should support most, if not all, life cycle activities.

static analyser

A software tool that supports the process of evaluating a system or
component based upon its form, structure, content or documentation [Ref
14].

test case generator

A software tool that accepts as input source code, test criteria,
specifications, or data structure definitions, uses these inputs to generate
test input data, and, sometimes, determines expected results [Ref 14].

A-6 BSSC(94)1
GLOSSARY

test harness

A software module used to invoke a module under test and, often, provide
test inputs, control and monitor execution, and report test results [Ref 14].

test management tool

A software tool that supports the storage and change control of test data
and scripts, the setup and execution of tests, and the storage of outputs.

tracing tool

A software tool that establishes a relationship between two or more
products of the development process [Ref 14].

workbench

An integrated set of tools that supports some closely related activities. For
example a “programming workbench” might contain a language sensitive
editor, a compiler and a debugger.

BSSC(94)1 A-7
GLOSSARY

A.2 LIST OF ACRONYMS

AD Architectural Design
ADD Architectural Design Document
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange
BSSC Board for Software Standardisation and Control
CASE Computer Aided Software Engineering
CDIF CASE Data Interchange Format
CGM Computer Graphics Metafile
DD Detailed Design
DDD Detailed Design Document
ECMA European Computer Manufacturers Association
HOOD Hierarchical Object-Oriented Design
IPSE Integrated Project Support Environment
LOTOS Language Of Temporal Ordering Specification
OM Operations and Maintenance
PCTE Portable Common Tools Environment
PDL Program Design Language
SDE Software Development Environment
SEE Software Engineering Environment
SADT Structured Analysis and Design Technique
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SPM Software Project Management
SPMP Software Project Management Plan
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SR Software Requirements
SRD Software Requirements Document
SSADM Structured Systems Analysis and Design Methodology
SUM Software User Manual
SVV Software Verification and Validation
SVVP Software Verification and Validation Plan
TR Transfer
UR User Requirements
URD User Requirements Document
VDM Vienna Development Method

A-8 BSSC(94)1
GLOSSARY

This page is intentionally left blank

BSSC(94)1 B-1
REFERENCES

APPENDIX B
REFERENCES

1. ESA Software Engineering Standards, ESA PSS-05-0 Issue 2 February
1991.

2. Guide to the ESA Software Engineering Standards, ESA PSS-05-01 Issue
1 October 1991.

3. Guide to the User Requirements Definition Phase, ESA PSS-05-02 Issue
1 October 1991.

4. Guide to the Software Requirements Definition Phase, ESA PSS-05-03
Issue 1 October 1991.

5. Guide to the Software Architectural Design Phase, ESA PSS-05-04 Issue
1 January 1992.

6. Guide to the Software Detailed Design and Production Phase, ESA PSS-
05-05 Issue 1 May 1992.

7. Guide to Software Configuration Management, ESA PSS-05-09 Issue 1
November 1992.

8. Guide to Software Verification and Validation, ESA PSS-05-10 Issue 1
February 1994.

9. Guide to Software Quality Assurance, ESA PSS-05-11 Issue 1 July 1993.

10. Recommended Practice for the Evaluation and Selection of CASE Tools,
IEEE Std 1209-1992

11. Reference Model for Frameworks of Software Engineering Environments,
ECMA TR/55 NIST Special Publication 500-201, December 1991

B-2 BSSC(94)1
REFERENCES

12. IEEE Standard for Software Project Management Plans, ANSI/IEEE Std
1058.1-1987

13. IEEE Standard for Software Quality Assurance Plans, ANSI/IEEE Std 730-
1989.

14. IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE Std 610.12-1990

15. Real-Time Case: the Integration Battle, C. Chappell, V. Downes and C.
Tully, Ovum Ltd, 1989.

16. CASE Data Interchange Format (CDIF) Syntax Definition, Cadre
Technologies Inc, December 1989.

17. Portable Common Tool Environment (PCTE) Abstract Specification,
Standard ECMA-149, 2nd Edition, June 1993.

18. Portable Common Tool Environment (PCTE), C Programming Language
Binding, ECMA-158, June 1991.

19. Portable Common Tool Environment (PCTE), Ada Programming
Language Binding, ECMA-162, December 1991.

20. Trial Use Standard Reference Model for Computing Tool
Interconnections, IEEE Std 1175-1992

21. Structured Analysis and System Specification, T. DeMarco, Yourdon
Press, 1980.

22. SSADM Version 4, NCC Blackwell Publications, 1991.

23. Structured Development for Real-Time Systems, P.T.Ward and
S.J.Mellor, Yourdon Press, 1985.

BSSC(94)1 B-3
REFERENCES

24. System Development, M.Jackson, Prentice-Hall, 1983.

25. Structured Analysis (SA): A Language for Communicating Ideas,
D.T.Ross, IEEE Transactions on Software Engineering, Vol SE-3, No 1,
January 1977,

26. Object-Oriented Analysis, P.Coad and E.Yourdon, Second Edition,
Yourdon Press, 1991.

27. Object-Oriented Modelling and Design, J.Rumbaugh, M.Blaha, W.
Premerlani, F. Eddy and W.Lorensen, Prentice-Hall, 1991.

28. Object-Oriented Design with Applications, G. Booch, Cummings, 1991.

29. Object-Oriented Systems Analysis - Modelling the World in Data,
S.Shlaer and S.J.Mellor, Yourdon Press, 1988.

30. Object Lifecycles - Modelling the World in States, S.Shlaer and
S.J.Mellor, Yourdon Press, 1992

31. HOOD Reference Manual, Issue 3, Draft C, Reference WME/89-173/JB
HOOD Working Group, ESTEC, 1989

32. Structured Software Development Using VDM, C.B.Jones, Prentice-Hall
1986.

33. Structured Design: Fundamentals of a Discipline of Computer Program
Specification and Systems Design, E.Yourdon and L.Constantine,
Yourdon Press, 1978.

34. Object-Oriented Design, P.Coad and E.Yourdon, Prentice-Hall, 1991.

35. Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric, T.J.McCabe, National Bureau of
Standards Special Publication 500-99, 1982.

B-4 BSSC(94)1
REFERENCES

36. Design Complexity Measurement and Testing, T.J.McCabe and
C.W.Butler, Communications of the ACM, Vol 32, No 12, December
1989.

BSSC(94)1 C-1
INDEX

APPENDIX C
INDEX

C-2 BSSC(94)1
INDEX

architectural design phase, 13
Booch, 12, 13
build tool, 16
CASE tool, 3
CDIF, 30
Coad-Yourdon, 12, 13
code generator, 15
coding standards, 24
comparator, 24
compiler, 16
computer aided software engineering, 3
Constantine, 13
control integration, 28
cost-based algorithm, 37
coverage analyser, 25
cyclomatic complexity, 24
data integration, 28
De Marco, 12
debugger, 25
desktop-publishing system, 10
detailed design and production phase, 14
detailed design tool, 15
document management tool, 22
documentation generator, 17
documentation tool, 10
ESSDE, 31
formal methods, 12, 13
framework, 27
functional decomposition, 11
graphics tool, 10
HOOD, 13
installation tool, 17
Jackson System Development, 12, 13
language standards, 24
language-sensitive editor, 15
librarians, 21
linker, 16
logical modelling tool, 11
Modeling Tools, 13
object-oriented analysis, 12
object-oriented design, 13
operations and maintenance phase, 17
PCTE, 30
performance analyser, 25
presentation integration, 28
problem handling tool, 22
process modelling tool, 20
process support tool, 20
program proof tool, 26
project planning tool, 19
project reporting tool, 20

prototyping tool, 11, 14
rank-based algorithm, 37
reference model, 28
repository, 22
requirements management tool, 10, 13
reverse engineering tool, 18
risk analysis tool, 19
Rumbaugh, 12, 13
SADT, 12
scale-based algorithm, 37
SDE, 27
SEE, 27
semantic analyser, 26
Shlaer-Mellor, 12, 13
software configuration management, 21
software cost estimating tool, 19
software development environment, 27
software engineering environment, 27
software project management, 18
software quality assurance, 26
software requirements definition phase, 11
software verification and validation, 22
spreadsheets, 20
SSADM, 12
static analyser, 24
structured analysis;, 11
structured design, 13
structured testing, 24
test case generator, 24
test harness, 25
test management tool, 25
text editor, 10
tracing tool, 23
transfer phase, 17
user requirements definition phase, 10
Ward-Mellor, 12
word processor, 10
Yourdon, 13

